Iterators
- The iterator pattern allows you to perform some task on a sequence of items in turn.
- Iterators provide a way to traverse, transform, or consume elements efficiently without needing to manually manage indices or loops.
- Rust iterators are lazy by default, meaning they don’t perform operations until explicitly consumed.
collect()
can take anything iterable, and turn it into a relevant collection.- References:
iterators1.rs
// When performing operations on elements within a collection, iterators are
// essential. This module helps you get familiar with the structure of using an
// iterator and how to go through elements within an iterable collection.
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
#[test]
fn iterators() {
let my_fav_fruits = ["banana", "custard apple", "avocado", "peach", "raspberry"];
// Create an iterator over the array.
let mut fav_fruits_iterator = my_fav_fruits.iter();
assert_eq!(fav_fruits_iterator.next(), Some(&"banana"));
assert_eq!(fav_fruits_iterator.next(), Some(&"custard apple")); // Replace `todo!()`
assert_eq!(fav_fruits_iterator.next(), Some(&"avocado"));
assert_eq!(fav_fruits_iterator.next(), Some(&"peach")); // Replace `todo!()`
assert_eq!(fav_fruits_iterator.next(), Some(&"raspberry"));
assert_eq!(fav_fruits_iterator.next(), None); // Replace `todo!()`
}
}
-
This exercise is simple we just need to create iterators based on
my_fav_fruits
array. -
We can do this by calling
iter
method like this:let mut fav_fruits_iterator = my_fav_fruits.iter();
iterators2.rs
// In this exercise, you'll learn some of the unique advantages that iterators
// can offer.
// Complete the `capitalize_first` function.
// "hello" -> "Hello"
fn capitalize_first(input: &str) -> String {
let mut chars = input.chars();
match chars.next() {
None => String::new(),
Some(first) => format!("{}{}", first.to_uppercase(), chars.as_str()),
}
}
// Apply the `capitalize_first` function to a slice of string slices.
// Return a vector of strings.
// ["hello", "world"] -> ["Hello", "World"]
fn capitalize_words_vector(words: &[&str]) -> Vec<String> {
words.iter().map(|w| capitalize_first(w)).collect()
}
// Apply the `capitalize_first` function again to a slice of string
// slices. Return a single string.
// ["hello", " ", "world"] -> "Hello World"
fn capitalize_words_string(words: &[&str]) -> String {
words.iter().map(|w| capitalize_first(w)).collect()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(capitalize_first("hello"), "Hello");
}
#[test]
fn test_empty() {
assert_eq!(capitalize_first(""), "");
}
#[test]
fn test_iterate_string_vec() {
let words = vec!["hello", "world"];
assert_eq!(capitalize_words_vector(&words), ["Hello", "World"]);
}
#[test]
fn test_iterate_into_string() {
let words = vec!["hello", " ", "world"];
assert_eq!(capitalize_words_string(&words), "Hello World");
}
}
-
First task in this exercise is to complete the
capitalize_first
function.-
We already have
match
syntax for firstchar
for the given input. -
We just need to uppercase it and combine it with the reset of the chars.
-
We can do it by using
format
or+
like this:format!("{}{}", first.to_uppercase(), chars.as_str())
or
first.to_uppercase().to_string() + chars.as_str()
-
-
Second and third task is kinda similar, in here we will learn how powerful method
collect
is. -
In the
capitalize_words_vector
function we need to iterate givenwords
and capitalize it using function in the first task. -
We can do it like this:
words.iter().map(|word| capitalize_first(word)).collect()
collect()
can take anything iterable, and turn it into a relevant collection. -
In this case rust will convert the iterator to desired return type which is
Vec<String>
. -
This also means that we can use the same code for our next task in function
capitalize_words_string
and Rust will convert the iterator into desired return type which isString
.
iterators3.rs
#[derive(Debug, PartialEq, Eq)]
enum DivisionError {
// Example: 42 / 0
DivideByZero,
// Only case for `i64`: `i64::MIN / -1` because the result is `i64::MAX + 1`
IntegerOverflow,
// Example: 5 / 2 = 2.5
NotDivisible,
}
// Calculate `a` divided by `b` if `a` is evenly divisible by `b`.
// Otherwise, return a suitable error.
fn divide(a: i64, b: i64) -> Result<i64, DivisionError> {
if b == 0 {
return Err(DivisionError::DivideByZero);
}
let (r, overflow) = a.overflowing_div(b);
if overflow {
return Err(DivisionError::IntegerOverflow);
}
if a % b != 0 {
return Err(DivisionError::NotDivisible);
}
Ok(r)
}
// Add the correct return type and complete the function body.
// Desired output: `Ok([1, 11, 1426, 3])`
fn result_with_list() -> Result<Vec<i64>, DivisionError> {
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
division_results.into_iter().collect()
}
// Add the correct return type and complete the function body.
// Desired output: `[Ok(1), Ok(11), Ok(1426), Ok(3)]`
fn list_of_results() -> Vec<Result<i64, DivisionError>> {
let numbers = [27, 297, 38502, 81];
let division_results = numbers.into_iter().map(|n| divide(n, 27));
division_results.into_iter().collect()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_success() {
assert_eq!(divide(81, 9), Ok(9));
}
#[test]
fn test_divide_by_0() {
assert_eq!(divide(81, 0), Err(DivisionError::DivideByZero));
}
#[test]
fn test_integer_overflow() {
assert_eq!(divide(i64::MIN, -1), Err(DivisionError::IntegerOverflow));
}
#[test]
fn test_not_divisible() {
assert_eq!(divide(81, 6), Err(DivisionError::NotDivisible));
}
#[test]
fn test_divide_0_by_something() {
assert_eq!(divide(0, 81), Ok(0));
}
#[test]
fn test_result_with_list() {
assert_eq!(result_with_list().unwrap(), [1, 11, 1426, 3]);
}
#[test]
fn test_list_of_results() {
assert_eq!(list_of_results(), [Ok(1), Ok(11), Ok(1426), Ok(3)]);
}
}
-
First task in this exercise is to complete the function
divide
to return error in accordance with enumDivisionError
. -
For the overflow checking we can do it by using method
overflowing_div
.if b == 0 {
return Err(DivisionError::DivideByZero);
}
let (r, overflow) = a.overflowing_div(b);
if overflow {
return Err(DivisionError::IntegerOverflow);
}
if a % b != 0 {
return Err(DivisionError::NotDivisible);
}
Ok(r) -
Second task is to fix function
result_with_list
.- The return signature that satisfy the desired output should be
Result<Vec<i64>, DivisionError>
. - And we can use
into_iter().collect()
method chain to convert the iterator to the desired output.
- The return signature that satisfy the desired output should be
-
Similar like previous task, the last task is to fix function
list_of_results
.- The return signature that satisfy the desired output should be
Vec<Result<i64, DivisionError>>
. - And we can use
into_iter().collect()
method chain to convert the iterator to the desired output.
- The return signature that satisfy the desired output should be
iterators4.rs
fn factorial(num: u64) -> u64 {
// Complete this function to return the factorial of `num` which is
// defined as `1 * 2 * 3 * … * num`.
// https://en.wikipedia.org/wiki/Factorial
//
// Do not use:
// - early returns (using the `return` keyword explicitly)
// Try not to use:
// - imperative style loops (for/while)
// - additional variables
// For an extra challenge, don't use:
// - recursion
// (1..=num).fold(1, |r, x| r * x)
(1..=num).product()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn factorial_of_0() {
assert_eq!(factorial(0), 1);
}
#[test]
fn factorial_of_1() {
assert_eq!(factorial(1), 1);
}
#[test]
fn factorial_of_2() {
assert_eq!(factorial(2), 2);
}
#[test]
fn factorial_of_4() {
assert_eq!(factorial(4), 24);
}
}
-
This exercise is straightforward, we just need to finish the
factorial
function. -
We can use
fold
method to do this.Folds every element into an accumulator by applying an operation, returning the final result.
(1..=num).fold(1, |r, x| r * x)
-
But then you will see in that rust compiler will suggest to use
product
instead like this:Iterates over the entire iterator, multiplying all the elements
(1..=num).product()
iterators5.rs
// Let's define a simple model to track Rustlings' exercise progress. Progress
// will be modelled using a hash map. The name of the exercise is the key and
// the progress is the value. Two counting functions were created to count the
// number of exercises with a given progress. Recreate this counting
// functionality using iterators. Try to not use imperative loops (for/while).
use std::collections::HashMap;
#[derive(Clone, Copy, PartialEq, Eq)]
enum Progress {
None,
Some,
Complete,
}
fn count_for(map: &HashMap<String, Progress>, value: Progress) -> usize {
let mut count = 0;
for val in map.values() {
if *val == value {
count += 1;
}
}
count
}
// Implement the functionality of `count_for` but with an iterator instead
// of a `for` loop.
fn count_iterator(map: &HashMap<String, Progress>, value: Progress) -> usize {
// `map` is a hash map with `String` keys and `Progress` values.
// map = { "variables1": Complete, "from_str": None, … }
map.iter()
.map(|(_k, p)| if *p == value { 1 } else { 0 })
.sum()
}
fn count_collection_for(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
let mut count = 0;
for map in collection {
for val in map.values() {
if *val == value {
count += 1;
}
}
}
count
}
// Implement the functionality of `count_collection_for` but with an
// iterator instead of a `for` loop.
fn count_collection_iterator(collection: &[HashMap<String, Progress>], value: Progress) -> usize {
// `collection` is a slice of hash maps.
// collection = [{ "variables1": Complete, "from_str": None, … },
// { "variables2": Complete, … }, … ]
collection.iter().map(|m| count_iterator(m, value)).sum()
}
fn main() {
// You can optionally experiment here.
}
#[cfg(test)]
mod tests {
use super::*;
fn get_map() -> HashMap<String, Progress> {
use Progress::*;
let mut map = HashMap::new();
map.insert(String::from("variables1"), Complete);
map.insert(String::from("functions1"), Complete);
map.insert(String::from("hashmap1"), Complete);
map.insert(String::from("arc1"), Some);
map.insert(String::from("as_ref_mut"), None);
map.insert(String::from("from_str"), None);
map
}
fn get_vec_map() -> Vec<HashMap<String, Progress>> {
use Progress::*;
let map = get_map();
let mut other = HashMap::new();
other.insert(String::from("variables2"), Complete);
other.insert(String::from("functions2"), Complete);
other.insert(String::from("if1"), Complete);
other.insert(String::from("from_into"), None);
other.insert(String::from("try_from_into"), None);
vec![map, other]
}
#[test]
fn count_complete() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::Complete), 3);
}
#[test]
fn count_some() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::Some), 1);
}
#[test]
fn count_none() {
let map = get_map();
assert_eq!(count_iterator(&map, Progress::None), 2);
}
#[test]
fn count_complete_equals_for() {
let map = get_map();
let progress_states = [Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_for(&map, progress_state),
count_iterator(&map, progress_state),
);
}
}
#[test]
fn count_collection_complete() {
let collection = get_vec_map();
assert_eq!(
count_collection_iterator(&collection, Progress::Complete),
6,
);
}
#[test]
fn count_collection_some() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Progress::Some), 1);
}
#[test]
fn count_collection_none() {
let collection = get_vec_map();
assert_eq!(count_collection_iterator(&collection, Progress::None), 4);
}
#[test]
fn count_collection_equals_for() {
let collection = get_vec_map();
let progress_states = [Progress::Complete, Progress::Some, Progress::None];
for progress_state in progress_states {
assert_eq!(
count_collection_for(&collection, progress_state),
count_collection_iterator(&collection, progress_state),
);
}
}
}
-
This exercise may looks intimidating but its quite simple.
-
First is we need to complete the function
count_iterator
.- Basically we need to return count of given hashmap values that match with given Progress.
- We can use iterator, map it, then calculate the sum like this:
map.iter().map(|(_k, p)| if *p == value { 1 } else { 0 }).sum()
-
Second is we need to complete the function
count_collection_iterator
.- Basically for each hashmap in the given collection we need to count it the matching progress and sum it.
- Similar like the first task we can iter, map, then sum it like this:
collection.iter().map(|m| count_iterator(m, value)).sum()