Skip to main content

Smart Pointers

  • Smart pointers are variables that contain an address in memory and reference some other data, but they also have additional metadata and capabilities.
  • Smart pointers in Rust often own the data they point to, while references only borrow data.
  • Box<T>: Handle recursive types, which the compiler cannot compute their size at compile-time.
  • Rc<T> (Reference Counted): Keeps track of how many references exist to the data and automatically cleans up when the reference count drops to zero.
  • Arc<T> (Atomic Reference Counted): Similar like RC but safe to be shared across threads.
  • Cow<T> (Clone On Write): provide immutable access to borrowed data, and clone the data lazily when mutation or ownership is required.
  • References:

box1.rs

// At compile time, Rust needs to know how much space a type takes up. This
// becomes problematic for recursive types, where a value can have as part of
// itself another value of the same type. To get around the issue, we can use a
// `Box` - a smart pointer used to store data on the heap, which also allows us
// to wrap a recursive type.
//
// The recursive type we're implementing in this exercise is the "cons list", a
// data structure frequently found in functional programming languages. Each
// item in a cons list contains two elements: The value of the current item and
// the next item. The last item is a value called `Nil`.

// Use a `Box` in the enum definition to make the code compile.
#[derive(PartialEq, Debug)]
enum List {
Cons(i32, Box<List>),
Nil,
}

// Create an empty cons list.
fn create_empty_list() -> List {
List::Nil
}

// Create a non-empty cons list.
fn create_non_empty_list() -> List {
List::Cons(10, Box::new(List::Nil))
}

fn main() {
println!("This is an empty cons list: {:?}", create_empty_list());
println!(
"This is a non-empty cons list: {:?}",
create_non_empty_list(),
);
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn test_create_empty_list() {
assert_eq!(create_empty_list(), List::Nil);
}

#[test]
fn test_create_non_empty_list() {
assert_ne!(create_empty_list(), create_non_empty_list());
}
}
  • As the comment stated in this exercise, we need to use Box to wrap the recursive.
  • So we need to change the enum variant to Cons(i32, Box<List>).
  • Then complete the create function with List::Nill for empty cons list.
  • And List::Cons(10, Box::new(List::Nil)) for non-empty cons list.

rc1.rs

// In this exercise, we want to express the concept of multiple owners via the
// `Rc<T>` type. This is a model of our solar system - there is a `Sun` type and
// multiple `Planet`s. The planets take ownership of the sun, indicating that
// they revolve around the sun.

use std::rc::Rc;

#[derive(Debug)]
struct Sun;

#[derive(Debug)]
enum Planet {
Mercury(Rc<Sun>),
Venus(Rc<Sun>),
Earth(Rc<Sun>),
Mars(Rc<Sun>),
Jupiter(Rc<Sun>),
Saturn(Rc<Sun>),
Uranus(Rc<Sun>),
Neptune(Rc<Sun>),
}

impl Planet {
fn details(&self) {
println!("Hi from {self:?}!");
}
}

fn main() {
// You can optionally experiment here.
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn rc1() {
let sun = Rc::new(Sun);
println!("reference count = {}", Rc::strong_count(&sun)); // 1 reference

let mercury = Planet::Mercury(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 2 references
mercury.details();

let venus = Planet::Venus(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 3 references
venus.details();

let earth = Planet::Earth(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 4 references
earth.details();

let mars = Planet::Mars(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 5 references
mars.details();

let jupiter = Planet::Jupiter(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 6 references
jupiter.details();

// Clone the sun
let saturn = Planet::Saturn(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 7 references
saturn.details();

// Clone the sun
let uranus = Planet::Uranus(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 8 references
uranus.details();

// Clone the sun
let neptune = Planet::Neptune(Rc::clone(&sun));
println!("reference count = {}", Rc::strong_count(&sun)); // 9 references
neptune.details();

assert_eq!(Rc::strong_count(&sun), 9);

drop(neptune);
println!("reference count = {}", Rc::strong_count(&sun)); // 8 references

drop(uranus);
println!("reference count = {}", Rc::strong_count(&sun)); // 7 references

drop(saturn);
println!("reference count = {}", Rc::strong_count(&sun)); // 6 references

drop(jupiter);
println!("reference count = {}", Rc::strong_count(&sun)); // 5 references

drop(mars);
println!("reference count = {}", Rc::strong_count(&sun)); // 4 references

// drop earth
drop(earth);
println!("reference count = {}", Rc::strong_count(&sun)); // 3 references

// drop venus
drop(venus);
println!("reference count = {}", Rc::strong_count(&sun)); // 2 references

// drop mercury
drop(mercury);
println!("reference count = {}", Rc::strong_count(&sun)); // 1 reference

assert_eq!(Rc::strong_count(&sun), 1);
}
}
  • With Rc reference can be shared and have multiple owners.
  • In this case we only need to use Rc::clone(&sun) instead of creating new Sun.
  • And then properly drop the planet so the test case at the end will not fail.

arc1.rs

// In this exercise, we are given a `Vec` of `u32` called `numbers` with values
// ranging from 0 to 99. We would like to use this set of numbers within 8
// different threads simultaneously. Each thread is going to get the sum of
// every eighth value with an offset.
//
// The first thread (offset 0), will sum 0, 8, 16, …
// The second thread (offset 1), will sum 1, 9, 17, …
// The third thread (offset 2), will sum 2, 10, 18, …
// …
// The eighth thread (offset 7), will sum 7, 15, 23, …
//
// Each thread should own a reference-counting pointer to the vector of
// numbers. But `Rc` isn't thread-safe. Therefore, we need to use `Arc`.
//
// Don't get distracted by how threads are spawned and joined. We will practice
// that later in the exercises about threads.

// Don't change the lines below.
#![forbid(unused_imports)]
use std::{sync::Arc, thread};

fn main() {
let numbers: Vec<_> = (0..100u32).collect();

// Define `shared_numbers` by using `Arc`.
let shared_numbers = Arc::new(numbers);

let mut join_handles = Vec::new();

for offset in 0..8 {
// Define `child_numbers` using `shared_numbers`.
let child_numbers = Arc::clone(&shared_numbers);

let handle = thread::spawn(move || {
let sum: u32 = child_numbers.iter().filter(|&&n| n % 8 == offset).sum();
println!("Sum of offset {offset} is {sum}");
});

join_handles.push(handle);
}

for handle in join_handles.into_iter() {
handle.join().unwrap();
}
}
  • This exercise is straightforward, we need to use Arc.
  • First create shared_numbers using Arc::new(numbers).
  • Then inside th for block create child_numbers using Arc::clone(&shared_numbers).

cow1.rs

// This exercise explores the `Cow` (Clone-On-Write) smart pointer. It can
// enclose and provide immutable access to borrowed data and clone the data
// lazily when mutation or ownership is required. The type is designed to work
// with general borrowed data via the `Borrow` trait.

use std::borrow::Cow;

fn abs_all(input: &mut Cow<[i32]>) {
for ind in 0..input.len() {
let value = input[ind];
if value < 0 {
// Clones into a vector if not already owned.
input.to_mut()[ind] = -value;
}
}
}

fn main() {
// You can optionally experiment here.
}

#[cfg(test)]
mod tests {
use super::*;

#[test]
fn reference_mutation() {
// Clone occurs because `input` needs to be mutated.
let vec = vec![-1, 0, 1];
let mut input = Cow::from(&vec);
abs_all(&mut input);
assert!(matches!(input, Cow::Owned(_)));
}

#[test]
fn reference_no_mutation() {
// No clone occurs because `input` doesn't need to be mutated.
let vec = vec![0, 1, 2];
let mut input = Cow::from(&vec);
abs_all(&mut input);
// Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
assert!(matches!(input, Cow::Borrowed(_)));
}

#[test]
fn owned_no_mutation() {
// We can also pass `vec` without `&` so `Cow` owns it directly. In this
// case, no mutation occurs (all numbers are already absolute) and thus
// also no clone. But the result is still owned because it was never
// borrowed or mutated.
let vec = vec![0, 1, 2];
let mut input = Cow::from(vec);
abs_all(&mut input);
// Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
assert!(matches!(input, Cow::Owned(_)));
}

#[test]
fn owned_mutation() {
// Of course this is also the case if a mutation does occur (not all
// numbers are absolute). In this case, the call to `to_mut()` in the
// `abs_all` function returns a reference to the same data as before.
let vec = vec![-1, 0, 1];
let mut input = Cow::from(vec);
abs_all(&mut input);
// Replace `todo!()` with `Cow::Owned(_)` or `Cow::Borrowed(_)`.
assert!(matches!(input, Cow::Owned(_)));
}
}
  • This exercise will simulate the Cow pattern.

    The type Cow is a smart pointer providing clone-on-write functionality: it can enclose and provide immutable access to borrowed data, and clone the data lazily when mutation or ownership is required.

  • We just need to put proper type match, either Cow::Owned(_) or Cow::Borrowed(_).

    • reference_no_mutation should be Cow::Borrowed(_).
    • owned_no_mutation should be Cow::Owned(_).
    • owned_mutation should be Cow::Owned(_).